Source code

Scaling matterssource code

Paper: Lucas B.V. de Amorim, George D.C. Cavalcanti, Rafael M.O. Cruz. The choice of scaling technique matters for classification performance. Applied Soft Computing, 2023.



Hate speechsource code

Paper: Rafael MO Cruz, Woshington V de Sousa, George DC Cavalcanti. Selecting and combining complementary feature representations and classifiers for hate speech detection. Online Social Networks and Media, 2022.



Multiple-Set Dynamic Selection (MSDS) — source code

Paper:Felipe N. Walmsley, George D.C. Cavalcanti, Robert Sabourin, Rafael M.O. Cruz. An investigation into the effects of label noise on Dynamic Selection algorithms. Information Fusion, 2022.



Label noisesource code

Paper: Kecia G. Moura, Ricardo B. C. Prudêncio, George D. C. Cavalcanti. Label noise detection under the Noise at Random model with ensemble filters. Intelligent Data Analysis, 2022.



Multi-class One-class classifier Dynamic Ensemble Selection (MODES)source code

Paper: Rogério C.P. Fragoso, George D.C. Cavalcanti, Roberto H.W. Pinheiro, Luiz S. Oliveira. Dynamic selection and combination of one-class classifiers for multi-class classificationKnowledge-Based Systems, 2021.



A framework for dynamic regressor selection (MINE) source code

Paper: Thiago J.M. Moura, George D.C. Cavalcanti, Luiz S.Oliveira. MINE: A Framework for Dynamic Regressor Selection. Information Sciences, 543:157-179, 2021.



Perturbation-based Classifier (PerC) — source code

Paper: Edson L. Araújo, George D. C. Cavalcanti, Tsang Ing Ren. Perturbation-based classifier. Soft Computing, 2020.



Ranking-based Instance Selection (RIS) — source code

Paper: 
– George D. C. Cavalcanti and Rodolfo J. O. Soares. Ranking-based Instance Selection for Pattern Classification. Expert Systems with Applications, 2020.



Combined Dissimilarity Spaces (CoDiS) — source code

Papers: 
– Roberto H. W. Pinheiro, George D. C. Cavalcanti, Tsang Ing Ren. Combining dissimilarity spaces for text categorization. Information Sciences, v. 406, p. 87-101, 2017.
– Letícia V. N. Lapenda, Roberto H. W. Pinheiro, George D. C. Cavalcanti. An empirical analysis of Combined Dissimilarity Spaces, International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, 2018.



Diversity Pruning (DivP) — source code

Paper: George D. C. Cavalcanti, Luiz S. Oliveira, Thiago J. M. Moura and Guilherme V. Carvalho. Combining Diversity Measures for Ensemble PruningPattern Recognition Letters, 2016.



Class-dependent Locality Preserving Projections (CdLPP) — source code

 

Paper: Elias R. Silva Jr, George D. C. Cavalcanti, Tsang Ing Ren. Class-wise feature extraction technique for multimodal dataNeurocomputing, 2016.



Adaptive Threshold-based Instance Selection (ATISA) — source code

Paper: George D. C. Cavalcanti, Tsang Ing Ren and Cesar L. Pereira. ATISA: Adaptive Threshold-based Instance Selection AlgorithmExpert Systems with Applications, v. 40, pp. 6894-6900, 2013.



Spatial Surface Coarseness Analysis (SSCA) — source code

Paper: Luis F. A. Pereira, George D. C. Cavalcanti, Tsang Ing Ren and Hector N. B. Pinheiro. Spatial surface coarseness analysis: technique for fingerprint spoof detectionElectronics Letters, v. 49, pp. 260-261, 2013.



At Least One FeaTure (ALOFT) — source code

Paper: Roberto H. W. Pinheiro, George D. C. Cavalcanti, Renato F. Corrêa and Tsang Ing Ren. A global-ranking local feature selection method for text categorizationExpert Systems with Applications, v. 39, pp. 12851-12857, 2012.



Maximum f Features per Document (MFD) & Maximum f Features per Document-Reduced (MFDR)source code

Paper: Roberto H. W. Pinheiro, George D. C. Cavalcanti and Tsang Ing Ren. Data-driven global-ranking local feature selection methods for text categorizationExpert Systems with Applications, v. 42, pp. 1941-1949, 2015.



Class-dependent Maximum f Features per Document-Reduced (cMFDR) — source code

Paper: Rogério CP Fragoso, et al. Class-dependent feature selection algorithm for text categorization. International Joint Conference on Neural Networks (IJCNN), 2016.



Automatic Features Subsets Analyzer (AFSA) — source code

Paper: Rogério CP Fragoso, et al. A method for automatic determination of the feature vector size for text categorization. Brazilian Conference on Intelligent Systems (BRACIS), 2016.



LIPNet source code

Paper: Bruno JT Fernandes, George DC Cavalcanti, Tsang Ing Ren. Lateral Inhibition Pyramidal Neural Network for Image Classification. IEEE Transactions on Cybernetics, v. 43, p. 2082-2092, 2013.



Document Skew Correction source code

Paper: Angélica A. Mascaro, George D. C. Cavalcanti and Carlos A. B. Mello. Fast and robust skew estimation of scanned documents through background area informationPattern Recognition Letters, pp. 1403-1411, 2010.